

Evaluation of a Highly Multiplexed Automated Assay for the Detection of Beer Spoilage Flora

Daniela Bocioaga¹, Kathryn Mix¹, Stephanie Morse¹, Kyleen Sorensen¹, I. Cristina McGuire¹, Sarah Kozak¹, Jessica Pecone¹, Katherine Sweitzer¹, Peter Trabold¹, Gwendolyn Spizz¹ ¹ Rheonix, Inc., Ithaca NY

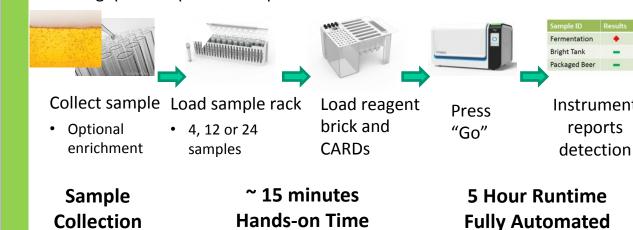
2017 IAFP Annual Meeting

Introduction

Beer is a hostile environment for most bacteria, but some strains of lactic acid bacteria (LAB) have evolved survival mechanisms which may ultimately lead to product spoilage. Furthermore, certain strains of yeast can also cause spoilage despite the use of yeast during the beer-making process. Therefore, an assay that can detect both bacterial and fungal organisms at a genus, species, and genetic level is essential for detecting and characterizing beer spoilage

Current methods used to detect spoilage organisms may require lengthy procedures with skilled interpretation. Identification of beer spoilage organisms (BSOs) has typically been conducted using culture-based detection methods, with results obtained up to a week after sample processing begins. Furthermore, traditional methods only detect the presence of a particular species but do not necessarily indicate the presence of spoilage genes needed for these organisms to propagate in beer. In contrast, nucleic acid-based detection methods enable rapid detection of BSOs. These methods not only determine the presence of the organism, but also indicate whether or not it has the capability of persisting in the presence of antimicrobial iso-alpha acids derived from hops.

This study evaluates the sensitivity, specificity, and adaptability of the Rheonix® Beer SpoilerAlert™ assay, a fully automated sample-to-results multiplexing molecular detection kit. The sample rack, CARD® (Chemistry and Reagent Device) cartridges and reagent brick are placed in the Encompass Optimum™ workstation and all processes required for lysing organisms, extracting nucleic acids, amplifying and detecting target genes, and result analysis are automatically performed without user intervention on the Rheonix workstation Reagents are dispensed by an onboard robot and liquid is moved via microfluidic pumps and channels within the CARDs. Amplification occurs via the onboard thermocycler and endpoint detection occurs through hybridization to a low-density capture array. Captured targets are detected and analyzed by an onboard camera and imaging software, which provides the user with a report of which genes and/or organisms are detected. Four individual samples are analyzed per CARD, with 6 CARDs per run, resulting in up to 24 independent samples analyzed in 5 hours, with minimal hands on time.


Beer SpoilerAlert™ Workflow

Simple, rapid, multiplexed microorganism detection system using the Encompass Optimum workstation

- Fully integrated sample prep and detection True walk-away capability

• Minimal hands-on time

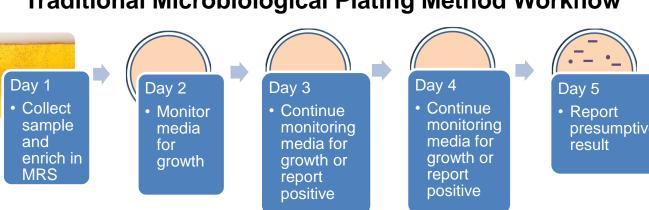
- Can multiplex up to 22 individual targets
- Throughput of up to 24 samples

The Rheonix Beer spoilage flora detection method targets four distinct sequences enabling rapid detection of lactic acid bacteria and four sequences detecting hop resistance genes. Furthermore, the assay also contains targets for three yeast sequences to detect the following strains: Saccharomyces cerevisiae (brewer's yeast), S. cerevisiae var. diastaticus and Brettanomyces bruxellensis. This is useful to detect cross-contamination by yeast purposefully used to make beer (S. cerevisiae, B. bruxellensis), while also detecting the spoilage yeast S. cerevisiae var. diastaticus. The presence of *S. cerevisiae* var. diastaticus is of particular concern due to its genetic homology with brewer's yeast and typically remains undetectable until spoilage occurs.

Materials & Methods

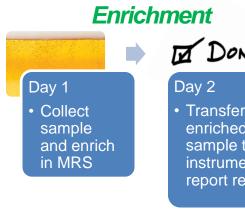
Strains, Media and Culture Conditions Microorganisms were obtained from The Beer Research Institute, ATCC, DSMZ, National Collection of Yeast Cultures. local craft breweries and the United States Department of Agriculture, maintained as stock cultures in 20% glycerol at -70°C and propagated as per provider instructions. Lactic acid bacteria were grown using MRS supplemented with beer (B-MRS) and yeast were grown using YM (DIFCO). B-MRS was prepared with filtered clear beer. B-MRS agar plates were prepared by adding filtered beer to autoclaved MRS agar, to a final concentration of 0.5xBeer/0.5xMRS. Lactic acid bacteria were incubated at 30°C, under a 10% CO₂ atmosphere, while yeasts were incubated aerobically at 25°C.

Analysis of Samples on the Encompass Optimum™ Workstation To validate target specificity, overnight cultures were grown in liquid media under appropriate conditions. Cultures were counted using a Cellometer X2 (Nexcelom) confirmed with plate counts, and diluted accordingly in either media or buffer to the desired concentration. Samples were run on the Encompass Optimum™ workstation, and the results were analyzed through an automated software report.


Limit of Detection (LOD) Cultures were first diluted in phosphate buffered saline (PBS), followed by dilutions in filtered beer to obtain suspensions ranging from 10¹ to 10⁵ CFU/mL. Each dilution was analyzed directly on the workstation (2) mL per sample tube). Ten mL of each dilution was then filtered through a 47 mm, 0.45 µm filter. Cells were collected off the filter in 2 mL of PBS and analyzed on the workstation.

Minimum Enrichment Inoculum (MEI) Cultures were diluted in B-MRS to obtain suspensions ranging from 10⁰ to 10³ CFU/mL. Ten mL of each dilution were filtered through a 47 mm, 0.45 µm filter. The filter was then placed in a 60 mm Petri dish with 2 mL B-MRS, and incubated for 18 and 24 hours at 30°C under 10% CO₂ atmosphere. In parallel, 2 mL of microbial suspensions of the same concentrations treatments. After 18 hours, both sets of samples were removed from the incubator The enriched filters were scraped using cell scrapers and suspensions were ansferred to sample tubes. In parallel, both sample sets were analyzed on the workstation. The samples were allowed to incubate for an additional six hours and analyzed again on the workstation.

Environmental Sampling Overnight cultures of *Lactobacillus buchneri* and Pediococcus claussenii were diluted in PBS to obtain concentrations of 10², 10³, and 10⁴ CFU/mL. For each dilution, 10 x 10 µl were applied onto a sterile stainless steel surface, allowed to attach for 30 minutes, and then collected with a swab prewetted with MRS. Swabs were transferred immediately into MRS in sample tubes and were incubated for 24 hours at 30°C and 10% CO₂ modified atmosphere. In addition, various locations in a brewery were swabbed, with samples taken from various locations in the plant including tanks, valves, surfaces, tubes, and drains. Swabs were treated similarly, with enrichment immediately in MRS broth.

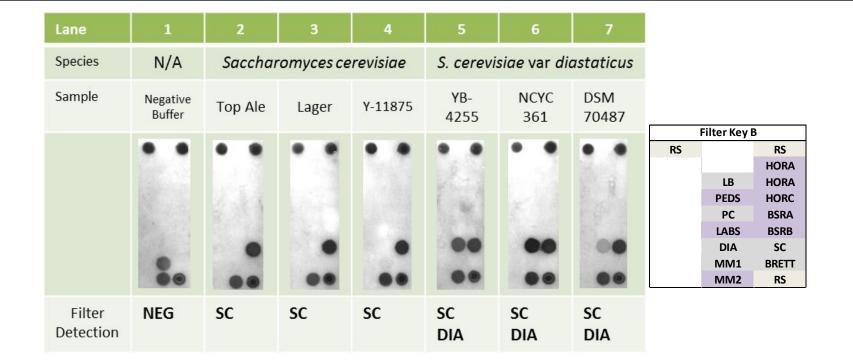
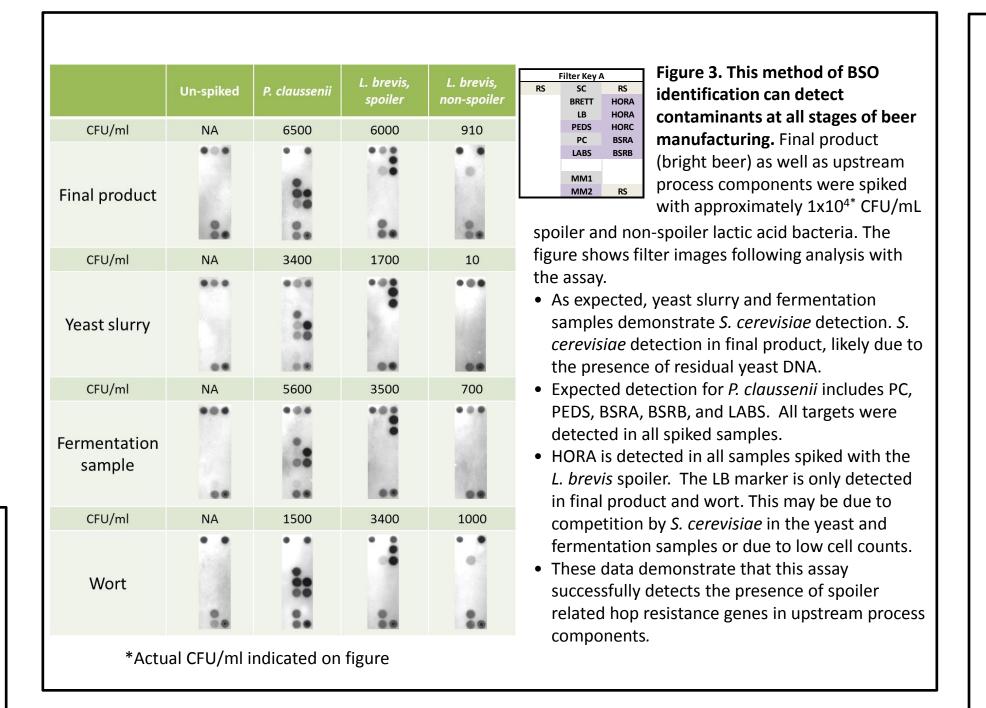

Targets detected with the Beer SpoilerAlert™ Assay: Key for filters						
RS	Assay reference spot					
	Targets amplified by Master Mix 1					
MM1	Control for PCR Master Mix 1					
PC	Target found specifically in <i>Pediococcus claussenii</i>					
LB	Lactobacillus brevis					
SC	Saccharomyces cerevisiae					
DIA	Saccharomyces cerevisiae variant diastaticus					
BRETT	Brettanomyces bruxellensis					
Targets amplified by Master Mix 2						
MM2	Control for PCR Master Mix 2					
PED	Target found in all currently sequenced <i>Pediococcus</i> species					
LABS	Plasmid biomarker present in strains of various lactic acid bacteria (LAB)					
HORA	Hop resistance gene, horA, found on plasmids in various LAB					
HORC	Hop resistance gene, horC, found on plasmids in various LAB					
BSRA	Hop resistance gene, bsrA, found in P. claussenii					
BSRB	Hop resistance gene, bsrB, found in P. claussenii					

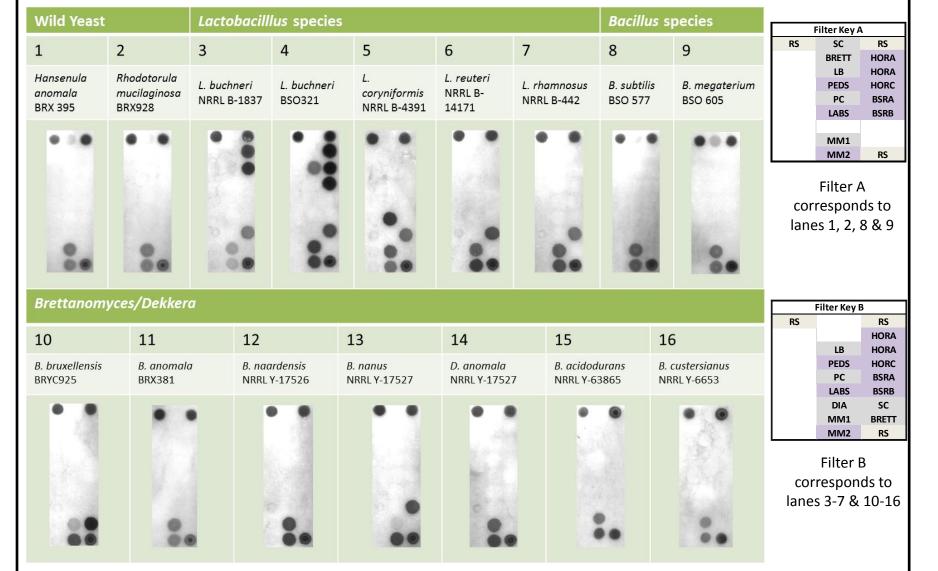
Traditional Microbiological Plating Method Workflow

Rheonix Beer SpoilerAlert™ Assay Workflow No enrichment

M DONE

Results


Figure 1. The test kit can distinguish Saccharomyces cerevisiae variant diastaticus from S. cerevisiae. Different strains of yeast were spiked into Rheonix collection buffer at a concentration approximately 1x10⁷ CFU/mL and analyzed using the Encompass Optimum[™] workstation. Three strains of brewers yeast (lanes 2-4) are distinguishable from three independent *S. cerevisiae* var. *diastaticus* (lanes 5-7). The key on the right of the figure indicates probe orientation on the filters.

	Limit of Detection (LOD) CFU/mL		Minimum Enrichment Inoculum (MEI) Total CFU inoculum/ 2 mL			
Microorganism tested	Direct	Filtered	Direct		Filtered	
			18 h	24 h	18h	24 h
Lactobacillus buchneri	1x10 ⁴	5x10 ⁴	10	10	10	1
Pediococcus claussenii	1x10 ⁴	5x10 ³	10	1	10	10
Brettanomyces bruxellensis	1x10 ⁵	5x10 ⁴	100	100	100	100
Saccharomyces cerevisiae var. diastaticus	1x10 ⁴	5x10 ⁴	ND	10	10	10

Figure 2. The limit of detection and minimum enrichment inoculum. The LOD and MEI are presented for Lactobacillus buchneri (LB), Pediococcus claussenii (PC), Brettanomyces bruxellensis (BB), and Saccharomyces cerevisiae var. diastaticus (SC/DIA). The data demonstrate LODs approximated to 1X10⁴ CFU/mL for the LAB and SC/DIA, and 1X10⁵ CFU/mL for BB. A minimum inoculum of 10 CFU in a final volume of 2 mL is sufficient to detect LB, PC and SC/DIA after 18 hours, while 100 CFU is required to detect BB. For LB the inoculum can be decreased to 1 CFU/2 mL when the sample is allowed to enrich for 24 hours. The LOD and MEI are defined when 100% of replicates are positive in a single experiment, however detection at

ower levels has been observed in multiple experiments. (ND=not determined)							
Sample Handling Procedure	Definition						
Direct	Suspension of microorganisms in beer at the concentration indicated						
Filtered	Sample concentrated by filtration, re-suspended in PBS						
Direct/Enriched	Sample enriched in B- MRS (bacteria) or YM (yeast) in sample tubes						
Filtered/Enriched	Sample concentrated by filtration and enriched in B-MRS or YM						

Figure 4. Assay Specificity. Assay specificity was confirmed via testing of potentially crossreacting organisms. Two wild yeast, Hansenula anomala, and Rhodotorula mucilaginosa were tested for potential cross-reactivity with *B. bruxellensis* and *S. cerevisiae*. Two *Bacillus* species were tested for potential cross-reactivity with *Lactobacillus* and *Pediococcus*. Various nonbruxellensis species were tested for cross-reactivity with B. bruxellensis. All non-targeted species tested negative demonstrating no cross-reactivity, and thus present minimal risk for false positives to be called with these organisms. This test kit currently does not have a generic *Lactobacillus* marker, and identification of *Lactobacillus* species is dependent on the presence of the plasmid associated markers, horA, horC, and LABS. Additionally, there is a marker specific for L. brevis that demonstrates similarity, but not identity, with other *Lactobacillus* species. Detection of the LB probe is possible at very high concentrations of non-brevis species that demonstrate significant homology. The data demonstrate detection of the LB probe in *L. buchneri*, but not in *L.* coryniformis, L. reuteri, or L. rhamnosus. In addition, plasmid associated targets are seen in L. buchneri and L. coryniformis.

Figure 5. This method can be used to test a wide variety of surfaces for validation of sanitation procedures. Control experiments were performed with known concentrations of microorganisms. Swabs containing MRS were used to collect **Swabbed surface** samples. **Into media** samples contain a known concentration of spoilers added directly to the media, and **Direct on Swab** samples were obtained by adding microorganisms directly onto swabs. Control experiments illustrate detection of all anticipated genomic and plasmid targets. Unsurprisingly, brewery samples showed detection of SC in all samples tested (data not shown). In contrast, there was no evidence of *P. claussenii* since PC, BSRA, and BSRB were not detected; L. brevis was also not detected. However, the three plasmid targets including the horA and horC hop resistant genes, as well as the lactic acid bacteria marker (LABS) found in some lactic acid bacteria were detected. The presence of yeast extract in commercial MRS media can result in false positives, exhibited by PED and LABS sometimes detected in negative controls.

Summary & Conclusions

- The method described is able to detect both bacterial and fungal organisms at the genus, species, and gene level. Additionally, it detects specific genes associated with hops resistance.
- The minimum inoculum required for detection following enrichment for all target organisms is approximately <10 CFU/mL. The post-enrichment limit of detection is <10⁴ CFU/sample before enrichment.
- The assay detects B. bruxellensis, S. cerevisiae, and S. cerevisiae var. diastaticus. This is useful to detect cross-contamination by yeast purposefully used to make beer (S. cerevisiae, B. bruxellensis), while also detecting the spoilage yeast *S. cerevisiae* var. *diastaticus*. The presence of *S. cerevisiae* var. diastaticus is of particular concern due to its close genetic homology with brewer's yeast.
- All *Pediococcus* species are detected, with an additional target to specify *Pediococcus claussenii*.
- The assay is adaptable in its ability to detect these microorganisms in a variety of matrices including wort, yeast slurry, fermentation, final product, and environmental samples.
- While the assay distinguishes between spoiler and non-spoiler Lactobacillus species, not all Lactobacillus species will be detected unless closely related to L. brevis as demonstrated by the presence of the targeted plasmid associated sequences.